English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Comparison of pm2.5 in Seoul, Korea estimated from the various ground-based and satellite aod

MPS-Authors
/persons/resource/persons266428

Lee,  Junhong
Precipitating Convection, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

applsci-11-10755.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kim, S.-M., Koo, J.-H., Lee, H., Mok, J., Choi, M., Go, S., et al. (2021). Comparison of pm2.5 in Seoul, Korea estimated from the various ground-based and satellite aod. Applied Sciences (Switzerland), 11. doi:10.3390/app112210755.


Cite as: http://hdl.handle.net/21.11116/0000-0009-8F8A-B
Abstract
Based on multiple linear regression (MLR) models, we estimated the PM2.5 at Seoul using a number of aerosol optical depth (AOD) values obtained from ground-based and satellite remote sensing observations. To construct the MLR model, we consider various parameters related to the ambient meteorology and air quality. In general, all AOD values resulted in the high quality of PM2.5 estimation through the MLR method: mostly correlation coefficients gt;~0.8. Among various polar-orbit satellite AODs, AOD values from the MODIS measurement contribute to better PM2.5 estimation. We also found that the quality of estimated PM2.5 shows some seasonal variation; the estimated PM2.5 values consistently have the highest correlation with in situ PM2.5 in autumn, but are not well established in winter, probably due to the difficulty of AOD retrieval in the winter condition. MLR modeling using spectral AOD values from the ground-based measurements revealed that the accuracy of PM2.5 estimation does not depend on the selected wavelength. Although all AOD values used in this study resulted in a reasonable accuracy range of PM2.5 estimation, our analyses of the difference in estimated PM2.5 reveal the importance of utilizing the proper AOD for the best quality of PM2.5 estimation. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.