Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Temperature dependence of quantum oscillations from non-parabolic dispersions

MPG-Autoren
/persons/resource/persons195511

Kumar,  Nitesh
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons237974

Fan,  Feng-Ren
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons202973

Shirer,  Kent R.
Physics of Microstructured Quantum Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons208737

Bachmann,  Maja D.
Physics of Microstructured Quantum Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons179670

Sun,  Yan
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126847

Shekhar,  Chandra
Chandra Shekhar, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Guo, C., Alexandradinata, A., Putzke, C., Estry, A., Tu, T., Kumar, N., et al. (2021). Temperature dependence of quantum oscillations from non-parabolic dispersions. Nature Communications, 12(1): 6213, pp. 1-7. doi:10.1038/s41467-021-26450-1.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-A387-6
Zusammenfassung
A versatile methodology to detect topological quasiparticles by transport measurements remains an open problem. Here, the authors propose and experimentally observe the temperature dependence of the quantum oscillation frequency as a signature of non-trivial band topology.
The phase offset of quantum oscillations is commonly used to experimentally diagnose topologically nontrivial Fermi surfaces. This methodology, however, is inconclusive for spin-orbit-coupled metals where pi-phase-shifts can also arise from non-topological origins. Here, we show that the linear dispersion in topological metals leads to a T-2-temperature correction to the oscillation frequency that is absent for parabolic dispersions. We confirm this effect experimentally in the Dirac semi-metal Cd3As2 and the multiband Dirac metal LaRhIn5. Both materials match a tuning-parameter-free theoretical prediction, emphasizing their unified origin. For topologically trivial Bi2O2Se, no frequency shift associated to linear bands is observed as expected. However, the pi-phase shift in Bi2O2Se would lead to a false positive in a Landau-fan plot analysis. Our frequency-focused methodology does not require any input from ab-initio calculations, and hence is promising for identifying correlated topological materials.