Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structural basis of human transcription–DNA repair coupling

MPG-Autoren
/persons/resource/persons186186

Kokic,  G.
Department of Molecular Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons267727

Wagner,  F. R.
Department of Molecular Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons211406

Chernev,  A.
Research Group of Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15947

Urlaub,  H.
Research Group of Bioanalytical Mass Spectrometry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons127020

Cramer,  P.
Department of Molecular Biology, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

3355979.pdf
(Verlagsversion), 18MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kokic, G., Wagner, F. R., Chernev, A., Urlaub, H., & Cramer, P. (2021). Structural basis of human transcription–DNA repair coupling. Nature, 598(7880), 368-372. doi:10.1038/s41586-021-03906-4.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-90AF-F
Zusammenfassung
Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription–repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA.