English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Direct and Catalytic C-Glycosylation of Arenes: Expeditious Synthesis of the Remdesivir Nucleoside

MPS-Authors
/persons/resource/persons226594

Obradors,  Carla
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons251523

Mitschke,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons261209

Aukland,  Miles H.
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132873

Leutzsch,  Markus
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons265592

Grossmann,  Oleg
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Brunen,  Sebastian
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons250585

Schwengers,  Sebastian A.
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Obradors, C., Mitschke, B., Aukland, M. H., Leutzsch, M., Grossmann, O., Brunen, S., et al. (2022). Direct and Catalytic C-Glycosylation of Arenes: Expeditious Synthesis of the Remdesivir Nucleoside. Angewandte Chemie International Edition, 61(11): e202114619. doi:10.1002/anie.202114619.


Cite as: https://hdl.handle.net/21.11116/0000-0009-A5F4-9
Abstract
Since early 2020, scientists have strived to find an effective solution to fight SARS-CoV-2, especially by developing reliable vaccines that inhibit the spread of the disease and repurposing drugs for combatting its effects on the human body. The antiviral prodrug Remdesivir is still the most widely used therapeutic during the early stage of the infection. However, the current synthetic routes rely on the use of protecting groups, air-sensitive reagents, and cryogenic conditions, impeding the cost-efficient supply to patients. We therefore focused on the development of a straightforward, direct addition of (hetero)arenes to unprotected sugars. Here we report a silylium-catalyzed and completely stereoselective C -glycosylation that initially yields the open-chain polyols, which can be selectively cyclized to provide either the kinetic α-furanose or the thermodynamically favored β-anomer. The method significantly expedites the synthesis of Remdesivir precursor GS-441524 after subsequent Mn-catalyzed C–H oxidation and deoxycyanation.