English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Harnessing the ambiphilicity of silyl nitronates in a catalytic asymmetric approach to aliphatic β3-amino acids

MPS-Authors
/persons/resource/persons201861

Das,  Sayantani
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons251523

Mitschke,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132969

De,  Chandra Kanta
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons268127

Harden,  Ingolf
Research Group Bistoni, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216804

Bistoni,  Giovanni
Research Group Bistoni, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Das, S., Mitschke, B., De, C. K., Harden, I., Bistoni, G., & List, B. (2021). Harnessing the ambiphilicity of silyl nitronates in a catalytic asymmetric approach to aliphatic β3-amino acids. Nature Catalysis, 4(12), 1043-1049. doi:10.1038/s41929-021-00714-x.


Cite as: https://hdl.handle.net/21.11116/0000-0009-A608-3
Abstract
Nitronate anions, formally generated by α-deprotonating the corresponding nitroalkanes, are highly nucleophilic and versatile intermediates in many carbon–carbon bond-forming reactions. In contrast, the corresponding silyl nitronates are ambiphilic and react, at the same carbon atom, with both electrophiles and nucleophiles. However, while their nucleophilicity has been well exploited in catalytic enantioselective reactions with imines and aldehydes, utilizing the electrophilicity of silyl nitronates in asymmetric synthesis has remained elusive. Here we report the facile, efficient and general reactivity of readily available silyl nitronates with silyl ketene acetals, catalysed by highly Lewis-acidic and confined silylium imidodiphosphorimidate catalysts. The products of this reaction, so-called nitroso acetals, are obtained in excellent enantioselectivity and can be easily converted into N-Boc-β3-amino acid esters in a single step.