English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Radiation chemistry provides nanoscopic insights into the role of intermediate phases in CeO2 mesocrystal formation

MPS-Authors
/persons/resource/persons250334

Piankova,  Diana V.
Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons260236

Zschiesche,  Hannes
Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons212917

Tarakina,  Nadezda V.
Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Li, Z., Piankova, D. V., Yang, Y., Kumagai, Y., Zschiesche, H., Jonsson, M., et al. (2022). Radiation chemistry provides nanoscopic insights into the role of intermediate phases in CeO2 mesocrystal formation. Angewandte Chemie International Edition, 61(6): e202112204. doi:10.1002/anie.202112204.


Cite as: https://hdl.handle.net/21.11116/0000-0009-931B-3
Abstract
The role of intermediate phases in CeO2 mesocrystal formation from aqueous Ce(III) solutions subjected to gamma-radiation was studied. Radiolytically formed hydroxyl radicals convert soluble Ce(III) into less soluble Ce(IV). Transmission electron microscopy (TEM) and X-ray diffraction studies of samples from different stages of the process allowed the identification of several stages in CeO2 mesocrystal evolution following the oxidation to Ce(IV): (1) formation of hydrated Ce(IV)-hydroxides, serving as intermediates in the liquid-to-solid phase transformation; (2) CeO2 primary particle growth inside the intermediate phase; (3) alignment of the primary particles into "pre-mesocrystals" and subsequently to mesocrystals, guided by confinement of the amorphous intermediate phase and accompanied by the formation of "mineral bridges". Further alignment of the obtained mesocrystals into supracrystals occurs upon slow drying, making it possible to form complex hierarchical architectures.