Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Revealing the relevant spatiotemporal scale underlying whole-brain dynamics


Deco,  Gustavo
Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain;
Catalan Institution for Research and Advanced Studies (ICREA), University Pompeu Fabra, Barcelona, Spain;
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
School of Psychological Sciences, Monash University, Melbourne, Australia;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Kobeleva, X., López-González, A., Kringelbach, M. L., & Deco, G. (2021). Revealing the relevant spatiotemporal scale underlying whole-brain dynamics. Frontiers in Neuroscience, 15: 715861. doi:10.3389/fnins.2021.715861.

Cite as: http://hdl.handle.net/21.11116/0000-0009-9843-0
The brain rapidly processes and adapts to new information by dynamically transitioning between whole-brain functional networks. In this whole-brain modeling study we investigate the relevance of spatiotemporal scale in whole-brain functional networks. This is achieved through estimating brain parcellations at different spatial scales (100-900 regions) and time series at different temporal scales (from milliseconds to seconds) generated by a whole-brain model fitted to fMRI data. We quantify the richness of the dynamic repertoire at each spatiotemporal scale by computing the entropy of transitions between whole-brain functional networks. The results show that the optimal relevant spatial scale is around 300 regions and a temporal scale of around 150 ms. Overall, this study provides much needed evidence for the relevant spatiotemporal scales and recommendations for analyses of brain dynamics.