English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Half-a-century of gamma-ray astrophysics at the Max-Planck Institute for Extraterrestrial Physics

MPS-Authors
/persons/resource/persons22354

Schönfelder,  Volker
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4634

Greiner,  Jochen
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schönfelder, V., & Greiner, J. (2021). Half-a-century of gamma-ray astrophysics at the Max-Planck Institute for Extraterrestrial Physics. European Physical Journal H, 46(1): 27. doi:10.1140/epjh/s13129-021-00031-8.


Cite as: https://hdl.handle.net/21.11116/0000-0009-9CA8-A
Abstract
Gamma-ray astronomy has been one of the prime scientific research fields of the Max-Planck Institute for Extraterrestrial Physics (MPE) from its beginning. Over the years, the entire gamma-ray energy range accessible from space was explored. The purpose of this review article is to summarise the achievements of the gamma-ray group at MPE during the last 50+ years. This covers a substantial part of the general history of space-based gamma-ray astronomy, for which both, general review articles (e.g. Pinkau in Exp Astron 5: 157, 2009; Schönfelder in AN 323: 524, 2002; Trimble in AIP Conf Proc 304: 40, 1994) and a detailed tabular list of events and missions (Leonard and Gehrels in https://heasarc.gsfc.nasa.gov/docs/history, version 1.0.8, 2009), have been compiled. Here, we describe the gamma-ray activities at MPE from the beginning till the present, reviewing the tight interplay between new technological developments towards new instruments and scientific progress in understanding gamma-ray sources in the sky. This covers (i) the early development of instruments and their tests on half a dozen balloon flights, (ii) the involvement in the most important space missions at the time, i.e. ESA’s COS-B satellite, NASA’s Compton Gamma-ray Observatory and Fermi Space Telescope, as well as ESA’s INTEGRAL observatory, (iii) the participation in several other missions such as TD-1, Solar Maximum Mission, or Ulysses, and (iv) the complementary ground-based optical instruments OPTIMA and GROND to enhance selected science topics (pulsars, gamma-ray bursts). With the gradual running-out of institutional support since 2010, gamma-ray astrophysics as a main research field has now come to an end at MPE.