Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Towards the interpretability of deep learning models for human neuroimaging

MPG-Autoren
/persons/resource/persons227300

Hofmann,  Simon       
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Artificial Intelligence, Fraunhofer Institute Heinrich Hertz;
Clinic for Cognitive Neurology, University of Leipzig Medical Center;

/persons/resource/persons225526

Beyer,  Frauke
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Artificial Intelligence, Fraunhofer Institute Heinrich Hertz;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig Medical Center;
MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin;
Center for Stroke Research, Charité – Universitätsmedizin Berlin;

/persons/resource/persons128137

Witte,  A. Veronica
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig Medical Center;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Hofmann_Beyer_pre.pdf
(Preprint), 9MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hofmann, S., Beyer, F., Lapuschkin, S., Loeffler, M., Müller, K.-R., Villringer, A., et al. (2021). Towards the interpretability of deep learning models for human neuroimaging. bioRxiv. doi:10.1101/2021.06.25.449906.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-9FF8-D
Zusammenfassung
Brain-age (BA) estimates based on deep learning are increasingly used as neuroimaging biomarker for brain health; however, the underlying neural features have remained unclear.
We combined ensembles of convolutional neural networks with Layer-wise Relevance Propagation (LRP) to detect which brain features contribute to BA. Trained on magnetic resonance imaging (MRI) data of a population-based study (n=2637, 18-82 years), our models estimated age accurately based on single and multiple modalities, regionally restricted and whole-brain images (mean absolute errors 3.37-3.86 years). We find that BA estimates capture aging at both small and large-scale changes, revealing gross enlargements of ventricles and subarachnoid spaces, as well as lesions, iron accumulations and atrophies that appear throughout the brain. Divergence from expected aging reflected cardiovascular risk
factors and accelerated aging was more pronounced in the frontal lobe. Applying LRP, our study demonstrates how superior deep learning models detect brain-aging in healthy and at-risk individuals throughout adulthood.