English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nanolayer laser absorber for femtoliter chemistry in polymer reactors

MPS-Authors
/persons/resource/persons238748

Zhang,  Junfang
Felix Löffler, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons262301

Liu,  Yuxin       
Felix Löffler, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons253115

Ronneberger,  Sebastian
Felix Löffler, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons212917

Tarakina,  Nadezda V.
Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons202218

Löffler,  Felix F.
Felix Löffler, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zhang, J., Liu, Y., Ronneberger, S., Tarakina, N. V., Merbouh, N., & Löffler, F. F. (2022). Nanolayer laser absorber for femtoliter chemistry in polymer reactors. Advanced Materials, 34(8): 2108493. doi:10.1002/adma.202108493.


Cite as: https://hdl.handle.net/21.11116/0000-0009-AC23-E
Abstract
Laser-induced forward transfer (LIFT) has the potential to be an alternative approach to atomic force microscopy based scanning probe lithography techniques, which have limitations in high-speed and large-scale patterning. However, traditional donor slides limit the resolution and chemical flexibility of LIFT. Here, we propose a hematite nanolayer absorber for donor slides to achieve high-resolution transfers down to sub-femtoliters. Being wettable by both aqueous and organic solvents, this new donor significantly increases the chemical scope for the LIFT process. For parallel amino acid coupling reactions, the patterning resolution can now be increased more than five times (>111,000 spots/cm2 for hematite donor versus 20,000 spots/cm2 for standard polyimide donor) with even faster scanning (2 versus 6 ms per spot). Due to the increased chemical flexibility, we could explore other types of reactions inside ultrasmall polymer reactors: copper (I) catalyzed click chemistry and laser-driven oxidation of a tetrahydroisoquinoline derivative, suggesting the potential of LIFT for both deposition of chemicals and laser-driven photochemical synthesis in femtoliters within milliseconds. Since the hematite shows no damage after typical laser transfer, donors can be regenerated by heat treatment. These findings will transform the LIFT process into an automatable, precise, and highly efficient technology for high-throughput femtoliter chemistry.