日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Motivic multiple zeta values and the block filtration

MPS-Authors
/persons/resource/persons268053

Keilthy,  Adam
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Keilthy, A. (2022). Motivic multiple zeta values and the block filtration. Journal of Number Theory, 238, 883-919. doi:10.1016/j.jnt.2021.10.006.


引用: https://hdl.handle.net/21.11116/0000-0009-A469-8
要旨
We extend the block filtration, defined by Brown based on the work of
Charlton, to all motivic multiple zeta values, and study relations compatible
with this filtration. We construct a Lie algebra describing relations among
motivic multiple zeta values modulo terms of lower block degree, proving
Charlton's cyclic insertion conjecture in this structure, and showing the
existence of a `block shuffle' relation, and a previously unknown dihedral
symmetry and differential relation.