Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Kekule versus hidden superconducting order in graphene-like systems: Competition and coexistence

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Kunst, F. K., Delerue, C., Smith, C. M., & Juricic, V. (2015). Kekule versus hidden superconducting order in graphene-like systems: Competition and coexistence. Physical Review B, 92(16): 165423. doi:10.1103/PhysRevB.92.165423.

Cite as: https://hdl.handle.net/21.11116/0000-0009-A71C-C
We theoretically study the competition between two possible exotic superconducting orders that may occur in graphene-like systems, assuming dominant nearest-neighbor attraction: the gapless hidden superconducting order, which renormalizes the Fermi velocity, and the Kekule order, which opens a superconducting gap. We perform an analysis within the mean-field theory for Dirac electrons, at finite temperature and finite chemical potential, as well as at half filling and zero temperature, first excluding the possibility of the coexistence of the two orders. In that case, we find the dependence of the critical (more precisely, crossover) temperature and the critical interaction on the chemical potential. As a result of this analysis, we find that the Kekule order is preferred over the hidden order at both finite temperature and finite chemical potential. However, when the coexistence of the two superconducting orders is allowed, by solving the coupled mean-field gap equations, we find that above a critical value of the attractive interaction a mixed phase sets in, in which these orders coexist. We show that the critical value of the interaction for this transition is greater than the critical coupling for the hidden superconducting state in the absence of the Kekule order, implying that there is a region in the phase diagram where the Kekule order is favored as a result of the competition with the hidden superconducting order. The latter, however, eventually sets in and coexists with the Kekule state. According to our mean-field calculations, the transition from the Kekule to the mixed phase is of the second order, but it may become first order when fluctuations are considered. Finally, we investigate whether these phases could be possible in honeycomb superlattices of self-assembled semiconducting nanocrystals, which have been recently experimentally realized with CdSe and PbSe.