日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Optical anisotropy of carbon nitride thin films and photografted polystyrene brushes

MPS-Authors
/persons/resource/persons222676

Giusto,  Paolo       
Paolo Giusto, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons203084

Kumru,  Baris
Baris Kumru, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Article.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Giusto, P., Kumru, B., Cruz, D., & Antonietti, M. (2022). Optical anisotropy of carbon nitride thin films and photografted polystyrene brushes. Advanced Optical Materials, 10(4):. doi:10.1002/adom.202101965.


引用: https://hdl.handle.net/21.11116/0000-0009-AC30-F
要旨
Polymer brushes on surfaces enable advanced material design. In the present contribution, transparent and flat photoactive polymeric carbon nitride (pCN) thin films are employed as a photoactive substrate and primer layer to grow polystyrene (PS) brushes. These films are then characterized by ellipsometry. For the first time herein is reported on the optical anisotropy of pCN thin films revealing a high positive birefringence up to 0.71 with an in-plane nD of 2.54 making this material of high interest for photonic devices. Furthermore and rather surprising, the photografted polystyrene brushes exhibit an unusual high negative birefringence, too. This negative birefringence can be attributed to a practically complete stretching of the polymer chains throughout growth in the radical chain process. As the stretched PS brushes grafted from the pCN surfaces also provide unusual surface properties, the overall system can be of great interest for photonics, but also as mechanical coating and membranes for gas separation.