Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

First-Principles Study of Optical Absorption Energies, Ligand Field and Spin-Hamiltonian Parameters of Cr3+ Ions in Emeralds

MPG-Autoren
/persons/resource/persons216801

Atanasov,  Mihail
Research Group Atanasov, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

ic1c02650_si_001.pdf
(Ergänzendes Material), 2MB

Zitation

Atanasov, M., Andreici Eftimie, E.-L., Avram, N. M., Brik, M. G., & Neese, F. (2022). First-Principles Study of Optical Absorption Energies, Ligand Field and Spin-Hamiltonian Parameters of Cr3+ Ions in Emeralds. Inorganic Chemistry, 61(1), 178-192. doi:10.1021/acs.inorgchem.1c02650.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-B561-D
Zusammenfassung
Herein, we study the electronic structure, energies, and vibronic structure of optical d-d transitions of Cr3+ ions doped in beryl (Be3Si6Al2O18:Cr3+, emerald). A computational protocol is developed that combines periodic density functional theory (for modeling of the bulk crystalline lattice of emerald) and the multireference configuration interaction complete active space self-consistent field method supplemented with n-electron valence second-order perturbation theory (for the calculation of the energy levels, wave functions, and spin-Hamiltonian and ligand-field parameters of the trigonal Cr3+ centers in the [CrO6]9– clusters embedded in an extended point charge field). Ligand-field parameters were extracted from mapping the effective ligand-field Hamiltonian onto the full many-particle Hamiltonian from one side and from a direct fit to energies of computed d-d transitions on the other side. These have been analyzed using ab initio ligand-field theory. The quality of the theoretical predictions is critically assessed through a detailed comparison with the available experimental data.