English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Visual cortex maps are optimized for uniform coverage

MPS-Authors
/persons/resource/persons38769

Bonhoeffer,  Tobias
Department: Cellular and Systems Neurobiology / Bonhoeffer, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38901

Hübener,  Mark
Department: Cellular and Systems Neurobiology / Bonhoeffer, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Swindale, N. V., Shoham, D., Grinvald, A., Bonhoeffer, T., & Hübener, M. (2000). Visual cortex maps are optimized for uniform coverage. Nature Neuroscience, 3(8), 822-826. doi:10.1038/77731.


Cite as: https://hdl.handle.net/21.11116/0000-0009-B24C-9
Abstract
Cat visual cortex contains a topographic map of visual space, plus superimposed, spatially periodic maps of ocular dominance, spatial frequency and orientation. It is hypothesized that the layout of these maps is determined by two constraints: continuity or smooth mapping of stimulus properties across the cortical surface, and coverage uniformity or uniform representation of combinations of map features over visual space. Here we use a quantitative measure of coverage uniformity (c') to test the hypothesis that cortical maps are optimized for coverage. When we perturbed the spatial relationships between ocular dominance, spatial frequency and orientation maps obtained in single regions of cortex, we found that cortical maps are at a local minimum for c'. This suggests that coverage optimization is an important organizing principle governing cortical map development.