English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Catalytic Asymmetric Additions of Enol Silanes to in situ Generated Cyclic, Aliphatic N-Acyliminium Ions

MPS-Authors
/persons/resource/persons265592

Grossmann,  Oleg
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons250587

Maji,  Rajat
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons261209

Aukland,  Miles H.
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Grossmann-Maji-Aukland-Lee-List.pdf
(Publisher version), 7MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Grossmann, O., Maji, R., Aukland, M. H., Lee, S., & List, B. (2022). Catalytic Asymmetric Additions of Enol Silanes to in situ Generated Cyclic, Aliphatic N-Acyliminium Ions. Angewandte Chemie International Edition, 61(9): e202115036. doi:10.1002/anie.202115036.


Cite as: https://hdl.handle.net/21.11116/0000-0009-B5EB-2
Abstract
Strong and confined imidodiphosphorimidate (IDPi) catalysts enable highly enantioselective substitutions of cyclic, aliphatic hemiaminal ethers with enol silanes. 2-Substituted pyrrolidines, piperidines, and azepanes are obtained with high enantioselectivities, and the method displays a broad tolerance of various enol silane nucleophiles. Several natural products can be accessed using this methodology. Mechanistic studies support the intermediacy of non-stabilized, cyclic N- ( exo -acyl)iminium ions, paired with the confined chiral counteranion. Computational studies suggest transition states that explain the observed enantioselectivity.