English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On BGG resolutions of unitary modules for quiver Hecke and Cherednik algebras

MPS-Authors
/persons/resource/persons235901

Norton,  E.
Max Planck Institute for Mathematics, Max Planck Society;

/persons/resource/persons268363

Simental,  J.
Max Planck Institute for Mathematics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Bowman, C., Norton, E., & Simental, J. (2022). On BGG resolutions of unitary modules for quiver Hecke and Cherednik algebras. Selecta Mathematica, 28(2): 29. doi:10.1007/s00029-021-00739-x.


Cite as: https://hdl.handle.net/21.11116/0000-0009-B899-B
Abstract
We provide a homological construction of unitary simple modules of Cherednik and
Hecke algebras of type A via BGG resolutions, solving a conjecture of Berkesch–
Griffeth–Sam. We vastly generalize the conjecture and its solution to cyclotomic
Cherednik and Hecke algebras over arbitrary ground fields, and calculate the Betti
numbers and Castelnuovo–Mumford regularity of certain symmetric linear subspace
arrangements.