English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Deaminative chlorination of aminoheterocycles

MPS-Authors
/persons/resource/persons268403

Ghiazza,  Clément
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons268405

Faber,  Teresa
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons242658

Gómez‐Palomino,  Alejandro
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons207433

Cornella,  Josep
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ghiazza, C., Faber, T., Gómez‐Palomino, A., & Cornella, J. (2022). Deaminative chlorination of aminoheterocycles. Nature Chemistry, 14(1), 78-84. doi:10.1038/s41557-021-00812-0.


Cite as: https://hdl.handle.net/21.11116/0000-0009-D63D-2
Abstract
Selective modification of heteroatom-containing aromatic structures is in high demand as it permits rapid evaluation of molecular complexity in advanced intermediates. Inspired by the selectivity of deaminases in nature, herein we present a simple methodology that enables the NH2 groups in aminoheterocycles to be conceived as masked modification handles. With the aid of a simple pyrylium reagent and a cheap chloride source, C(sp2)‒NH2 can be converted into C(sp2)‒Cl bonds. The method is characterized by its wide functional group tolerance and substrate scope, allowing the modification of >20 different classes of heteroaromatic motifs (five- and six-membered heterocycles), bearing numerous sensitive motifs. The facile conversion of NH2 into Cl in a late-stage fashion enables practitioners to apply Sandmeyer- and Vilsmeier-type transforms without the burden of explosive and unsafe diazonium salts, stoichiometric transition metals or highly oxidizing and unselective chlorinating agents.