Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Morphology quantification of three-dimensional fluid invasion patterns

MPG-Autoren
/persons/resource/persons268411

Li,  Weiwei
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121410

Herminghaus,  Stephan
Group Collective phenomena far from equilibrium, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121851

Seemann,  Ralf
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Li, W., Brinkmann, M., Scholl, H., Michiel, M. D., Herminghaus, S., & Seemann, R. (2022). Morphology quantification of three-dimensional fluid invasion patterns. International Journal of Multiphase Flow, 148: 103916. doi:10.1016/j.ijmultiphaseflow.2021.103916.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-BCB4-8
Zusammenfassung
In many situations, patterns of immiscible fluid displacement appear obviously different at first glance, but can hardly be distinguished using the commonly applied quantification by fractal dimension. In this work, we propose the mean finger area of the invading fluid, the average distance of defending fluid elements to the invading fluid as well as a discrete surface area of a coarse grained fluid representation as three alternative methods to characterize fluid displacement patterns in three dimensional permeable media. Applying the proposed methods to X-ray microtomography data of fluid displacement experiments in bead packs of homogeneous and mixed wettability, all of the three methods allow to clearly distinguish between a compact front morphology for wetting invading liquids and a finger-like structure for non-wetting invading liquids. When compared to the fractal dimension of the fluid pattern, all three quantities reveal more details with respect to the structure of the invading liquid. Applying these methods to microtomography data of fluid displacement in heterogeneously wetting bead packs reveal a fingering structure and preferential invasion paths that are controlled by local wettability.