English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

γ-Tubulin function during female germ-cell development and oogenesis in Drosophila

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tavosanis, G., & Gonzalez, C. (2003). γ-Tubulin function during female germ-cell development and oogenesis in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10263-10268. doi:10.1073/pnas.1731925100.


Cite as: https://hdl.handle.net/21.11116/0000-0009-BDE5-0
Abstract
A series of unconventional microtubule organizing centers play a fundamental role during egg chamber development in Drosophila. To gain a better understanding of their molecular nature, we have studied the centrosomal component gamma-tubulin during Drosophila oogenesis. We find that although single mutations in either of the two gamma-tubulin genes identified in Drosophila do not affect oogenesis progression the simultaneous depletion of both protein products has severe consequences. The combination of loss-of-function mutant alleles for the two gamma-tubulin genes leads to mitotic defects in female germ cells, resulting in agametic ovaries. A combination of weaker mutant alleles instead allows female germ-cell development to proceed, although the resulting egg chambers display pleiotropic abnormalities, most frequently affecting the number of nurse cells and oocytes per egg chamber. Thus, gamma-tubulin is required for several processes at different stages of germ-cell development and oogenesis, including oocyte determination and differentiation. Our data provide a functional link between a component of the peri-centriolar material, such as gamma-tubulin, and microtubule organization during Drosophila oogenesis. In addition, our results show that gamma-tubulin is required for female germ-cell proliferation and that the two gamma-tubulins present in Drosophila are functionally equivalent during female germ-cell development and oogenesis.