English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Labrador, J. P., Azcoitia, V., Tuckermann, J., Lin, C., Olaso, E., Manes, S., et al. (2001). The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Reports, 2(5), 446-452. doi:10.1093/embo-reports/kve094.


Cite as: https://hdl.handle.net/21.11116/0000-0009-BDED-8
Abstract
The discoidin domain receptor 2 (DDR2) is a member of a subfamily of receptor tyrosine kinases whose ligands are fibrillar collagens, and is widely expressed in postnatal tissues. We have generated DDR2-deficient mice to establish the in vivo functions of this receptor, which have remained obscure. These mice exhibit dwarfism and shortening of long bones. This phenotype appears to be caused by reduced chondrocyte proliferation, rather than aberrant differentiation or function. In a skin wound healing model, DDR2-/- mice exhibit a reduced proliferative response compared with wild-type littermates. In vitro, fibroblasts derived from DDR2-/- mutants proliferate more slowly than wild-type fibroblasts, a defect that is rescued by introduction of wild-type but not kinase-dead DDR2 receptor. Together our results suggest that DDR2 acts as an extracellular matrix sensor to modulate cell proliferation.