English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Molecular signatures in cetacean morbillivirus and host species proteomes: Unveiling the evolutionary dynamics of an enigmatic pathogen?

MPS-Authors
/persons/resource/persons188313

Zinzula,  Luca
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Zinzula, L., Mazzariol, S., & Di Guardo, G. (2022). Molecular signatures in cetacean morbillivirus and host species proteomes: Unveiling the evolutionary dynamics of an enigmatic pathogen? Microbiology and Immunology, 66(2), 52-58. doi:10.1111/1348-0421.12949.


Cite as: https://hdl.handle.net/21.11116/0000-000A-282F-6
Abstract
Cetacean morbillivirus (CeMV) infects marine mammals often causing a fatal respiratory and neurological disease. Recently, CeMV has expanded its geographic and host species range, with cases being reported worldwide among dolphins, whales, seals, and other aquatic mammalian species, and therefore has emerged as the most threatening nonanthropogenic factor affecting marine mammal's health and conservation. Extensive research efforts have aimed to understand CeMV epidemiology and ecology, however, the molecular mechanisms underlying its transmission and pathogenesis are still poorly understood. In particular, the field suffers from a knowledge gap on the structural and functional properties of CeMV proteins and their host interactors. Nevertheless, the body of scientific literature produced in recent years has inaugurated new investigational trends, driving future directions in CeMV molecular research. In this mini-review, the most recent literature has been summarized in the context of such research trends, and categorized into four priority research topics, such as (1) the interaction between CeMV glycoprotein and its host cell receptors across several species; (2) the CeMV molecular determinants responsible for different disease phenotype; (3) the host molecular determinants responsible for differential susceptibility to CeMV infection; (4) the CeMV molecular determinants responsible for difference virulence among circulating CeMV strains. Arguably, these are the most urgent topics that need to be investigated and that most promisingly will help to shed light on the details of CeMV evolutionary dynamics in the immediate future.