Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Point Absorber Limits to Future Gravitational-Wave Detectors

MPG-Autoren
/persons/resource/persons206562

Bode,  N.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Booker ,  P.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons231131

Liu,  J.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons231141

Meylahn,  F.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40511

Willke,  B.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2109.08743.pdf
(Preprint), 831KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jia, W., Yamamoto, H., Kuns, K., Effler, A., Evans, M., Fritschel, P., et al. (2021). Point Absorber Limits to Future Gravitational-Wave Detectors. Physical Review Letters, 127: 241102. doi:10.1103/PhysRevLett.127.241102.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-C145-F
Zusammenfassung
High-quality optical resonant cavities require low optical loss, typically on
the scale of parts per million. However, unintended micron-scale contaminants
on the resonator mirrors that absorb the light circulating in the cavity can
deform the surface thermoelastically, and thus increase losses by scattering
light out of the resonant mode. The point absorber effect is a limiting factor
in some high-power cavity experiments, for example, the Advanced LIGO
gravitational wave detector. In this Letter, we present a general approach to
the point absorber effect from first principles and simulate its contribution
to the increased scattering. The achievable circulating power in current and
future gravitational-wave detectors is calculated statistically given different
point absorber configurations. Our formulation is further confirmed
experimentally in comparison with the scattered power in the arm cavity of
Advanced LIGO measured by in-situ photodiodes. The understanding presented here
provides an important tool in the global effort to design future gravitational
wave detectors that support high optical power, and thus reduce quantum noise.