English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Functional connectivity alterations between default mode network and occipital cortex in patients with obsessive-compulsive disorder (OCD)

MPS-Authors
/persons/resource/persons96505

Schlagenhauf,  Florian
Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Bernstein Center for Computational Neuroscience, Berlin, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Geffen_2022.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Geffen, T., Smallwood, J., Finke, C., Olbrich, S., Sjoerds, Z., & Schlagenhauf, F. (2021). Functional connectivity alterations between default mode network and occipital cortex in patients with obsessive-compulsive disorder (OCD). NeuroImage: Clinical, 33: 102915. doi:10.1016/j.nicl.2021.102915.


Cite as: https://hdl.handle.net/21.11116/0000-0009-C236-F
Abstract
Altered brain network connectivity is a potential biomarker for obsessive–compulsive disorder (OCD). A meta-analysis of resting-state MRI studies by Gürsel et al. (2018) described altered functional connectivity in OCD patients within and between the default mode network (DMN), the salience network (SN), and the frontoparietal network (FPN), as well as evidence for aberrant fronto-striatal circuitry. Here, we tested the replicability of these meta-analytic rsfMRI findings by measuring functional connectivity during resting-state fMRI in a new sample of OCD patients (n = 24) and matched controls (n = 33).

We performed seed-to-voxel analyses using 30 seed regions from the prior meta-analysis. OCD patients showed reduced functional connectivity between the SN and the DMN compared to controls, replicating previous findings. We did not observe significant group differences of functional connectivity within the DMN, SN, nor FPN. Additionally, we observed reduced connectivity between the visual network to both the DMN and SN in OCD patients, in particular reduced functional connectivity between lateral parietal seeds and the left inferior lateral occipital pole. Furthermore, the right lateral parietal seed (associated with the DMN) was more strongly correlated with a cluster in the right lateral occipital cortex and precuneus (a region partly overlapping with the Dorsal Attentional Network (DAN)) in patients. Importantly, this latter finding was positively correlated to OCD symptom severity.

Overall, our study partly replicated prior meta-analytic findings, highlighting hypoconnectivity between SN and DMN as a potential biomarker for OCD. Furthermore, we identified changes between the SN and the DMN with the visual network. This suggests that abnormal connectivity between cortex regions associated with abstract functions (transmodal regions such as the DMN), and cortex regions associated with constrained neural processing (unimodal regions such as the visual cortex), may be important in OCD.