English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Regional synapse gain and loss accompany memory formation in larval zebrafish

MPS-Authors
/persons/resource/persons241750

Robson,  DN
Research Group Systems Neuroscience & Neuroengineering, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons241746

Li,  JM
Research Group Systems Neuroscience & Neuroengineering, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dempsey, W., Du, Z., Nadtochiy, A., Smith, C., Czajkowski, K., Andreev, A., et al. (2022). Regional synapse gain and loss accompany memory formation in larval zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 119(3). doi:10.1073/pnas.2107661119.


Cite as: https://hdl.handle.net/21.11116/0000-0009-CA2F-0
Abstract
Defining the structural and functional changes in the nervous system underlying learning and memory represents a major challenge for modern neuroscience. Although changes in neuronal activity following memory formation have been studied [B. F. Grewe et al., Nature 543, 670-675 (2017); M. T. Rogan, U. V. Stäubli, J. E. LeDoux, Nature 390, 604-607 (1997)], the underlying structural changes at the synapse level remain poorly understood. Here, we capture synaptic changes in the midlarval zebrafish brain that occur during associative memory formation by imaging excitatory synapses labeled with recombinant probes using selective plane illumination microscopy. Imaging the same subjects before and after classical conditioning at single-synapse resolution provides an unbiased mapping of synaptic changes accompanying memory formation. In control animals and animals that failed to learn the task, there were no significant changes in the spatial patterns of synapses in the pallium, which contains the equivalent of the mammalian amygdala and is essential for associative learning in teleost fish [M. Portavella, J. P. Vargas, B. Torres, C. Salas, Brain Res. Bull 57, 397-399 (2002)]. In zebrafish that formed memories, we saw a dramatic increase in the number of synapses in the ventrolateral pallium, which contains neurons active during memory formation and retrieval. Concurrently, synapse loss predominated in the dorsomedial pallium. Surprisingly, we did not observe significant changes in the intensity of synaptic labeling, a proxy for synaptic strength, with memory formation in any region of the pallium. Our results suggest that memory formation due to classical conditioning is associated with reciprocal changes in synapse numbers in the pallium.