Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Theta activity paradoxically boosts gamma and ripple frequency sensitivity in prefrontal interneurons

MPG-Autoren
/persons/resource/persons182437

Stuehmer,  Walter
Molecular biology of neuronal signals, Max Planck Institute of Experimental Medicine, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Merino, R. M., Leon-Pinzon, C., Stuehmer, W., Möck, M., Staiger, J. F., Wolf, F., et al. (2021). Theta activity paradoxically boosts gamma and ripple frequency sensitivity in prefrontal interneurons. Proceedings of the National Academy of Sciences of the USA, 118(51): e2114549118. doi:10.1073/pnas.2114549118.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-9577-8
Zusammenfassung
Fast oscillations in cortical circuits critically depend on GABAergic interneurons. Which interneuron types and populations can drive different cortical rhythms, however, remains unresolved and may depend on brain state. Here, we measured the sensitivity of different GABAergic interneurons in prefrontal cortex under conditions mimicking distinct brain states. While fast-spiking neurons always exhibited a wide bandwidth of around 400 Hz, the response properties of spike-frequency adapting interneurons switched with the background input’s statistics. Slowly fluctuating background activity, as typical for sleep or quiet wakefulness, dramatically boosted the neurons’ sensitivity to gamma and ripple frequencies. We developed a time-resolved dynamic gain analysis and revealed rapid sensitivity modulations that enable neurons to periodically boost gamma oscillations and ripples during specific phases of ongoing low-frequency oscillations. This mechanism predicts these prefrontal interneurons to be exquisitely sensitive to high-frequency ripples, especially during brain states characterized by slow rhythms, and to contribute substantially to theta-gamma cross-frequency coupling.