English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamics at Polarized Carbon Dioxide–Iron Oxyhydroxide Interfaces Unveil the Origin of Multicarbon Product Formation

MPS-Authors
/persons/resource/persons21378

Blume,  Raoul
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max-Planck-Institut für Chemische Energiekonversion;

/persons/resource/persons104550

Streibel,  Verena
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons104341

Velasco Vélez,  Juan
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max-Planck-Institut für Chemische Energiekonversion;

/persons/resource/persons21590

Hävecker,  Michael
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max-Planck-Institut für Chemische Energiekonversion;

/persons/resource/persons21743

Knop-Gericke,  Axel
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max-Planck-Institut für Chemische Energiekonversion;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max-Planck-Institut für Chemische Energiekonversion;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

acscatal.1c04296.pdf
(Publisher version), 11MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Arrigo, R., Blume, R., Streibel, V., Genovese, C., Roldan, A., Schuster, M. E., et al. (2022). Dynamics at Polarized Carbon Dioxide–Iron Oxyhydroxide Interfaces Unveil the Origin of Multicarbon Product Formation. ACS Catalysis, 12(1), 411-430. doi:10.1021/acscatal.1c04296.


Cite as: https://hdl.handle.net/21.11116/0000-0009-D108-2
Abstract
Surface-sensitive ambient pressure X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy combined with an electrocatalytic reactivity study, multilength-scale electron microscopy, and theoretical modeling provide insights into the gas-phase selective reduction of carbon dioxide to isopropanol on a nitrogen-doped carbon-supported iron oxyhydroxide electrocatalyst. Dissolved atomic carbon forms at relevant potentials for carbon dioxide reduction from the reduction of carbon monoxide chemisorbed on the surface of the ferrihydrite-like phase. Theoretical modeling reveals that the ferrihydrite structure allows vicinal chemisorbed carbon monoxide in the appropriate geometrical arrangement for coupling. Based on our observations, we suggest a mechanism of three-carbon-atom product formation, which involves the intermediate formation of atomic carbon that undergoes hydrogenation in the presence of hydrogen cations upon cathodic polarization. This mechanism is effective only in the case of thin ferrihydrite-like nanostructures coordinated at the edge planes of the graphitic support, where nitrogen edge sites stabilize these species and lower the overpotential for the reaction. Larger ferrihydrite-like nanoparticles are ineffective for electron transport.