Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Trained laser-patterned carbon as high-performance mechanical sensors

MPG-Autoren
/persons/resource/persons249445

Wang,  Huize
Volker Strauß, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons253115

Ronneberger,  Sebastian
Felix Löffler, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons202218

Loeffler,  Felix F.
Felix Löffler, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons229032

Strauss,  Volker
Volker Strauß, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hepp, M., Wang, H., Derr, K., Delacroix, S., Ronneberger, S., Loeffler, F. F., et al. (2022). Trained laser-patterned carbon as high-performance mechanical sensors. npj flexible electronics, 6: 3. doi:10.1038/s41528-022-00136-0.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-D2C2-E
Zusammenfassung
We describe the mechanical properties of turbostratically graphitized carbon films obtained by carbon laser-patterning (CLaP) and their application as bending or mechanical pressure sensors. Stable conductive carbonized films were imprinted on a flexible polyethylene terephthalate (PET) substrate by laser-induced carbonization. After initial gentle bending, i.e. training, these sponge-like porous films show a quantitative and reversible change in resistance upon bending or application of pressure in normal loading direction. Maximum response values of ΔR/R0 = 388% upon positive bending (tensile stress) and −22.9% upon negative bending (compression) are implicit for their high sensitivity towards mechanical deformation. Normal mechanical loading in a range between 0 and 500 kPa causes a response between ΔR/R0 = 0 and −15%. The reversible increase or decrease in resistance is attributed to compression or tension of the turbostratically graphitized domains, respectively. This mechanism is supported by a detailed microstructural and chemical high-resolution transmission electron microscopic analysis of the cross-section of the laser-patterned carbon.