Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Preprint

The role of the orbitofrontal cortex in creating cognitive maps

MPG-Autoren
/persons/resource/persons229897

Scholz,  R
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons239011

Lloyd,  K
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons217460

Dayan,  P
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

(Kein Zugriff möglich)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Machado Costa, K., Scholz, R., Lloyd, K., Moreno-Castilla, P., Gardner, M., Dayan, P., et al. (submitted). The role of the orbitofrontal cortex in creating cognitive maps.


Zusammenfassung
We use internal models of the external world to guide behavior, but little is known about how these cognitive maps are created. The orbitofrontal cortex (OFC) is typically thought to access these maps to support model-based decision-making, but it has recently been proposed that its critical contribution may be instead to integrate information into existing and new models. We tested between these alternatives using an outcome-specific devaluation task and a high-potency chemogenetic approach. We found that selectively inactivating OFC principal neurons when rats learned distinct cue-outcome associations, but prior to outcome devaluation, disrupted subsequent model-based inference, confirming that the OFC is critical for creating new cognitive maps. However, OFC inactivation surprisingly led to generalized devaluation. Using a novel reinforcement learning framework, we demonstrate that this effect is best explained not by a switch to a model-free system, as would be traditionally assumed, but rather by a circumscribed deficit in defining credit assignment precision during model construction. We conclude that the critical contribution of the OFC to learning is regulating the specificity of associations that comprise cognitive maps.