Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Biomimetic FeMo(Se, Te) as joint electron pool promoting nitrogen electrofixation

MPG-Autoren
/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Chen,  Sheng
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sun, Y., Ding, S., Xia, B., Duan, J., Antonietti, M., & Chen, S. (2022). Biomimetic FeMo(Se, Te) as joint electron pool promoting nitrogen electrofixation. Angewandte Chemie International Edition, 61(16): e202115198. doi:10.1002/anie.202115198.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-E116-0
Zusammenfassung
It has been long believed that FeMoS structure, where Fe is bonded with S, plays a pivotal role as a biomimetic catalyst for electrochemical nitrogen (N2) fixation . Nevertheless, the structure of Fe bonded to heavier analogues (Se or Te) has never been explored for N2 electrofixation. Here, we theoretically predict the electronic structure of FeMo(Se, Te) composed of tri-coordinated Fe species with open shells for binding with Se, which forms a collective electron pool for promoting N2 activation. Guided by this interesting prediction, we then demonstrate a two-step procedure to synthesize such structures, which displays remarkable N2 electrofixation activities with ammonia yield of 72.54 μg h-1 mg-1 and Faradic efficiency of 51.67% that are more than three times of the FeMoS counterpart. Further mechanism study has been conducted through density function theory (DFT) simulations. This work would provide new clues for designing versatile electrocatalytic materials for large-scale industrialization.