English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The GRAVITY young stellar object survey - VIII. Gas and dust faint inner rings in the hybrid disk of HD141569

MPS-Authors
/persons/resource/persons216131

Bauböck,  M.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons133043

Caselli,  P.
Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons225865

de Zeeuw,  P. T.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons254980

Drescher,  A.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4766

Eisenhauer,  F.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons260827

Gao,  F.
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons4590

Genzel,  R.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4768

Gillessen,  S.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons216133

Jiménez-Rosales,  Alejandra
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons16190

Ott,  T.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons206401

Shimizu,  T.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons248280

Stadler,  J.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons232635

Straub,  O.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4650

Sturm,  E.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4714

Dishoeck,  E. van
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons206120

Fellenberg,  S. D. von
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons214431

Widmann,  F.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ganci, V., Labadie, L., Klarmann, L., de Valon, A., Perraut, K., Benisty, M., et al. (2021). The GRAVITY young stellar object survey - VIII. Gas and dust faint inner rings in the hybrid disk of HD141569. Astronomy and Astrophysics, 655: A112. doi:10.1051/0004-6361/202141103.


Cite as: https://hdl.handle.net/21.11116/0000-0009-E1A9-A
Abstract
Context. The formation and evolution of planetary systems impact the evolution of the primordial accretion disk in its dust and gas content. HD 141569 is a peculiar object in this context as it is the only known pre-main sequence star characterized by a hybrid disk. Observations with 8 m class telescopes probed the outer-disk structure showing a complex system of multiple rings and outer spirals. Furthermore, interferometric observations attempted to characterize its inner 5 au region, but derived limited constraints.
Aims. The goal of this work was to explore with new high-resolution interferometric observations the geometry, properties, and dynamics of the dust and gas in the internal regions of HD 141569.
Methods. We observed HD 141569 on milliarcsecond scales with GRAVITY/VLTI in the near-infrared (IR) at low (R ~ 20) and high (R ~ 4000) spectral resolution. We interpreted the interferometric visibilities and spectral energy distribution with geometrical models and through radiative transfer techniques using the code MCMax to constrain the dust emission. We analyzed the high spectral resolution quantities (visibilities and differential phases) to investigate the properties of the Brackett-γ (Brγ) line emitting region.
Results. Thanks to the combination of three different epochs, GRAVITY resolves the inner dusty disk in the K band with squared visibilities down to V2 ~ 0.8. A differential phase signal is also detected in the region of the Brγ line along most of the six baselines. Data modeling shows that an IR excess of about 6% is spatially resolved and that the origin of this emission is confined in a ring of material located at a radius of ~1 au from the star with a width ≲0.3 au. The MCMax modeling suggests that this emission could originate from a small amount (1.4 × 10−8 M) of quantum-heated particles, while large silicate grain models cannot reproduce at the same time the observational constraints on the properties of near-IR and mid-IR fluxes. The high spectral resolution differential phases in the Brγ line clearly show an S-shape that can be best reproduced with a gaseous disk in Keplerian rotation, confined within 0.09 au (or 12.9 R). This is also hinted at by the double-peaked Brγ emission line shape, known from previous observations and confirmed by GRAVITY. The modeling of the continuum and gas emission shows that the inclination and position angle of these two components are consistent with a system showing relatively coplanar rings on all scales.
Conclusions. With a new and unique observational dataset on HD 141569, we show that the complex disk of this source is composed of a multitude of rings on all scales. This aspect makes HD 141569 a potentially unique source to investigate planet formation and disk evolution in intermediate-mass pre-main sequence stars.