English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Are massive dense clumps truly sub-virial? A new analysis using Gould Belt ammonia data

MPS-Authors
/persons/resource/persons172914

Pineda,  Jaime E.
Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons145334

Alves,  Felipe
Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons251736

Choudhury,  Spandan
Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons133043

Caselli,  Paola
Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons208524

Redaelli,  Elena
Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Singh, A., Matzner, C. D., Friesen, R. K., Martin, P. G., Pineda, J. E., Rosolowsky, E., et al. (2021). Are massive dense clumps truly sub-virial? A new analysis using Gould Belt ammonia data. The Astrophysical Journal, 922(1): 87. doi:10.3847/1538-4357/ac20d2.


Cite as: https://hdl.handle.net/21.11116/0000-0009-E1AC-7
Abstract
Dynamical studies of dense structures within molecular clouds often conclude that the most massive clumps contain too little kinetic energy for virial equilibrium, unless they are magnetized to an unexpected degree. This raises questions about how such a state might arise, and how it might persist long enough to represent the population of massive clumps. In an effort to reexamine the origins of this conclusion, we use ammonia line data from the Green Bank Ammonia Survey and Planck-calibrated dust emission data from Herschel to estimate the masses and kinetic and gravitational energies for dense clumps in the Gould Belt clouds. We show that several types of systematic error can enhance the appearance of low kinetic-to-gravitational energy ratios: insufficient removal of foreground and background material; ignoring the kinetic energy associated with velocity differences across a resolved cloud; and overcorrecting for stratification when evaluating the gravitational energy. Using an analysis designed to avoid these errors, we find that the most massive Gould Belt clumps harbor virial motions, rather than subvirial ones. As a by-product, we present a catalog of masses, energies, and virial energy ratios for 85 Gould Belt clumps.