Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides

MPG-Autoren
/persons/resource/persons85140

Mazheika,  Aliaksei
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons199246

Wang,  Yanggang
NOMAD, Fritz Haber Institute, Max Planck Society;
Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology;

/persons/resource/persons21549

Ghiringhelli,  Luca M.
NOMAD, Fritz Haber Institute, Max Planck Society;
The NOMAD Laboratory at the Humboldt University of Berlin;

/persons/resource/persons22064

Scheffler,  Matthias
NOMAD, Fritz Haber Institute, Max Planck Society;
The NOMAD Laboratory at the Humboldt University of Berlin;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41467-022-28042-z.pdf
(Verlagsversion), 1011KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mazheika, A., Wang, Y., Valero, R., Viñes, F., Illas, F., Ghiringhelli, L. M., et al. (2022). Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides. Nature Communications, 13: 419. doi:10.1038/s41467-022-28042-z.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-E601-2
Zusammenfassung
Catalytic-materials design requires predictive modeling of the interaction between catalyst and reactants. This is challenging due to the complexity and diversity of structure-property relationships across the chemical space. Here, we report a strategy for a rational design of catalytic materials using the artificial intelligence approach (AI) subgroup discovery. We identify catalyst genes (features) that correlate with mechanisms that trigger, facilitate, or hinder the activation of carbon dioxide (CO2) towards a chemical conversion. The AI model is trained on first-principles data for a broad family of oxides. We demonstrate that surfaces of experimentally identified good catalysts consistently exhibit combinations of genes resulting in a strong elongation of a C-O bond. The same combinations of genes also minimize the OCO-angle, the previously proposed indicator of activation, albeit under the constraint that the Sabatier principle is satisfied. Based on these findings, we propose a set of new promising catalyst materials for CO2 conversion.