English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Resolving atomic diffusion in Ru(0001)-O(2×2) with spiral high-speed scanning tunneling microscopy

MPS-Authors
/persons/resource/persons213389

Gura,  Leonard
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons192339

Yang,  Zechao
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons268193

Kalass,  Florian
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons268199

Brinker,  Matthias
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21628

Heyde,  Markus
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

PhysRevB.105.035411.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Gura, L., Yang, Z., Paier, J., Kalass, F., Brinker, M., Heyde, M., et al. (2022). Resolving atomic diffusion in Ru(0001)-O(2×2) with spiral high-speed scanning tunneling microscopy. Physical Review B, 105(3): 035411. doi:10.1103/PhysRevB.105.035411.


Cite as: https://hdl.handle.net/21.11116/0000-0009-E8D8-E
Abstract
An intermediate state in atomic diffusion processes in the O(2×2) layer on Ru(0001) is resolved with spiral high-speed scanning tunneling microscopy (STM). The diffusion of atomic oxygen in the adlayer has been studied by density functional theory and STM. Transition state theory proposes a migration pathway for the diffusion in the oxygen adlayer. With spiral scan geometries—a new approach to high-speed STM—the oxygen vacancy mobility on the highly covered Ru(0001) surface is determined to be in the range of 0.1 to 1 Hz. Experimental evidence for the intermediate state along the oxygen diffusion pathway is provided in real space and real time.