Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Conference Paper

Take it personally - A Python library for data enrichment for infometrical applications

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available

Seidlmayer, E., Galke, L., Melnychuk, T., Schultz, C., Tochtermann, K., & Förstner, K. U. (2019). Take it personally - A Python library for data enrichment for infometrical applications. In M. Alam, R. Usbeck, T. Pellegrini, H. Sack, & Y. Sure-Vetter (Eds.), Proceedings of the Posters and Demo Track of the 15th International Conference on Semantic Systems co-located with 15th International Conference on Semantic Systems (SEMANTiCS 2019).

Cite as: https://hdl.handle.net/21.11116/0000-0009-FAA4-4
Like every other social sphere, science is influenced by individual characteristics of researchers. However, for investigations on scientific networks, only little data about the social background of researchers, e.g. social origin, gender, affiliation etc., is available.
This paper introduces ”Take it personally - TIP”, a conceptual model and library currently under development, which aims to support the
semantic enrichment of publication databases with semantically related background information which resides elsewhere in the (semantic) web, such as Wikidata.
The supplementary information enriches the original information in the publication databases and thus facilitates the creation of complex scientific knowledge graphs. Such enrichment helps to improve the scientometric analysis of scientific publications as they can also take social backgrounds of researchers into account and to understand social structure in research communities.