Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Model systematics in time domain tests of binary black hole evolution

MPG-Autoren
/persons/resource/persons253150

Kastha,  Shilpa
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192149

Capano,  Collin
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons216224

Westerweck,  Julian
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons206564

Cabero,  Miriam
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20661

Krishnan,  Badri
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons26313

Nielsen,  Alex B.
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2111.13664.pdf
(Preprint), 2MB

PhysRevD.105.064042.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kastha, S., Capano, C., Westerweck, J., Cabero, M., Krishnan, B., & Nielsen, A. B. (2022). Model systematics in time domain tests of binary black hole evolution. Physical Review D, 105(6): 064042. doi:10.1103/PhysRevD.105.064042.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-FB2A-E
Zusammenfassung
We perform several consistency tests between different phases of binary black
hole dynamics; the inspiral, the merger, and the ringdown on the gravitational
wave events GW150914 and GW170814. These tests are performed explicitly in the
time domain, without any spectral leakage between the different phases. We
compute posterior distributions on the mass and spin of the initial black holes
and the final black hole. We also compute the initial areas of the two
individual black holes and the final area from the parameters describing the
remnant black hole. This facilitates a test of Hawking's black hole area
theorem. We use different waveform models to quantify systematic waveform
uncertainties for the area increase law with the two events. We find that these
errors may lead to overstating the confidence with which the area theorem is
confirmed. For example, we find $>99\%$ agreement with the area theorem for
GW150914 if a damped sinusoid consisting of a single-mode is used at merger to
estimate the final area. This is because this model overestimates the final
mass. Including an overtone of the dominant mode decreases the confidence to
$\sim94\%$; using a full merger-ringdown model further decreases the confidence
to $\sim 85-90\%$. We find that comparing the measured change in the area to
the expected change in area yields a more robust test, as it also captures over
estimates in the change of area. We find good agreement with GR when applying
this test to GW150914 and GW170814.