日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Integrin αIIbβ3 activation and clustering in minimal synthetic cells

MPS-Authors
/persons/resource/persons136425

Lira,  Rafael de
Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121236

Dimova,  Rumiana       
Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121584

Lipowsky,  Reinhard       
Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Article.pdf
(出版社版), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Benk, L. T., Benk, A. S., Lira, R. d., Cavalcanti-Adam, E. A., Dimova, R., Lipowsky, R., Geiger, B., & Spatz, J. P. (2022). Integrin αIIbβ3 activation and clustering in minimal synthetic cells. Advanced nanoBiomed research, 2(4):. doi:10.1002/anbr.202100094.


引用: https://hdl.handle.net/21.11116/0000-000A-01EF-8
要旨
Platelet adhesion and activation are mediated by integrin αIIbβ3 clustering, which is crucial for the hemostatic function of platelets. In an activated state, integrins provide the connection between the extracellular matrix and the actin cytoskeleton through a variety of cytoplasmic proteins, such as talin. Here, droplet-based microfluidics is applied to generate cell-sized giant unilamellar vesicles (GUVs) with a defined molecular composition to quantify the adhesion of integrin αIIbβ3-containing protocells in relation to the number of integrin–talin head domain (THD) complexes. Furthermore, it is shown that THD induces integrin clustering in protocells adhering to fibrinogen. The formation of this molecular link, which has, so far, only been observed in vivo, is an essential step in synthetic cell design to recapitulate integrin-mediated bidirectional signaling across the membrane. These results pave the way for further quantitative investigations of protein–protein interactions between integrins and associated proteins and their assembly within such defined, but complex, synthetic cells. An essential future step to mimic the complex interaction between cells and their environment will be to combine synthetic approaches with peptide chemistry to guide the molecular mechanisms involved in integrin binding and activation.