日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Fabclavine diversity in Xenorhabdus bacteria

MPS-Authors
/persons/resource/persons256033

Bode,  Helge B.
Natural Product Function and Engineering, Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Goethe-Universität Frankfurt am Main, External Organizations;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Wenskil, S. L., Cimen, H., Berghaus, N., Fuchs, S. W., Hazir, S., & Bode, H. B. (2020). Fabclavine diversity in Xenorhabdus bacteria. BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 16, 956-965. doi:10.3762/bjoc.16.84.


引用: https://hdl.handle.net/21.11116/0000-000A-050E-2
要旨
The global threat of multiresistant pathogens has to be answered by the development of novel antibiotics. Established antibiotic applications are often based on so-called secondary or specialized metabolites (SMs), identified in large screening approaches. To continue this successful strategy, new sources for bioactive compounds are required, such as the bacterial genera Xenorhabdus or Photorhabdus . In these strains, fabclavines are widely distributed SMs with a broad-spectrum bioactivity. Fabclavines are hybrid SMs derived from nonribosomal peptide synthetases (NRPS), polyunsaturated fatty acid (PUFA), and polyketide synthases (PKS). Selected Xenorhabdus and Photorhabdus mutant strains were generated applying a chemically inducible promoter in front of the suggested fabclavine (fcl) biosynthesis gene cluster (BGC), followed by the analysis of the occurring fabclavines. Subsequently, known and unknown derivatives were identified and confirmed by MALDI-MS and MALDI-MS2 experiments in combination with an optimized sample preparation. This led to a total number of 22 novel fabclavine derivatives in eight strains, increasing the overall number of fabclavines to 32. Together with the identification of fabclavines as major antibiotics in several entomopathogenic strains, our work lays the foundation for the rapid fabclavine identification and dereplication as the basis for future work of this widespread and bioactive SM class.