English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Extent of cord pathology in the lumbosacral enlargement in non-traumatic versus traumatic spinal cord injury

MPS-Authors
/persons/resource/persons188373

Freund,  Patrick
Balgrist Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
Department of Brain Repair & Rehabilitation, University College London, United Kingdom;
Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, United Kingdom;
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Seif,  Maryam
Balgrist Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

David, G., Vallotton, K., Hupp, M., Curt, A., Freund, P., & Seif, M. (2022). Extent of cord pathology in the lumbosacral enlargement in non-traumatic versus traumatic spinal cord injury. Journal of Neurotrauma. doi:10.1089/neu.2021.0389.


Cite as: http://hdl.handle.net/21.11116/0000-000A-06F1-F
Abstract
This study compares remote neurodegenerative changes caudal to a cervical injury in degenerative cervical myelopathy (DCM; i.e., non-traumatic) and incomplete traumatic spinal cord injury (tSCI) patients, using magnetic resonance imaging (MRI)-based tissue area measurements and diffusion tensor imaging (DTI). Eighteen mild-to-moderate DCM patients with sensory impairments (modified Japanese Orthopedic score: 16.2 ± 1.9), 14 incomplete tetraplegic tSCI patients (American Spinal Injury Association Impairment Scale C and D), and 20 healthy controls were recruited. All participants received DTI and T2*-weighted scans in the lumbosacral enlargement (caudal to injury) and at C2/C3 (rostral to injury). MRI readouts included DTI metrics in the white matter (WM) columns and cross-sectional WM and gray matter area. One-way analysis of variance with Tukey's post hoc comparison (p < 0.05) was used to assess group differences. In the lumbosacral enlargement, compared with DCM, tSCI patients exhibited decreased fractional anisotropy in the lateral (tSCI vs. DCM, -11.9%, p = 0.007) and ventral WM column (-8.0%, p = 0.021), and showed a trend toward lower values in the dorsal column (-8.9%, p = 0.068). At C2/C3, compared with controls, fractional anisotropy was lower in both groups in the dorsal (DCM vs. controls, -7.9%, p = 0.024; tSCI vs. controls, -10.0%, p = 0.007) and in the lateral column (DCM: -6.2%, p = 0.039; tSCI: -13.3%, p < 0.001), while tSCI patients had lower fractional anisotropy than DCM patients in the lateral column (-7.6%, p = 0.029). WM areas were not different between patient groups but were lower compared with controls in the lumbosacral enlargement (DCM: -16.9%, p < 0.001; tSCI: -10.5%, p = 0.043) and at C2/C3 (DCM: -16.0%, p < 0.001; tSCI: -18.1%, p < 0.001). In conclusion, mild-to-moderate DCM and incomplete tSCI lead to similar degree of degeneration of the dorsal and lateral columns at C2/C3, but tSCI results in more widespread white matter damage in the lumbosacral enlargement. These remote changes are likely to contribute to the patients' impairment and recovery. DTI is a sensitive tool to assess remote pathological changes in DCM and tSCI patients.