Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Binding of His-tagged fluorophores to lipid bilayers and giant vesicles

MPG-Autoren
/persons/resource/persons269889

Pramanik,  Shreya
Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons133119

Steinkühler,  Jan
Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121236

Dimova,  Rumiana
Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121584

Lipowsky,  Reinhard
Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Preprint.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pramanik, S., Steinkühler, J., Dimova, R., Spatz, J., & Lipowsky, R. (2022). Binding of His-tagged fluorophores to lipid bilayers and giant vesicles. bioRxiv, 2022.02.01.478643. doi:10.1101/2022.02.01.478643.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-0A0C-F
Zusammenfassung
His-tagged molecules can be attached to lipid bilayers via certain anchor lipids, a method that has been widely used for the biofunctionalization of membranes and vesicles. To measure the coverage by the membrane-bound molecules, it is useful to study molecules that are fluorescent as well. Here, we use two such molecules, green fluorescence protein (GFP) and green-fluorescent fluorescin isothiocyanate (FITC), both of which are tagged with a chain of six histidines that bind to achor lipids within the bilayers. This His-tag is much smaller in size than the GFP molecule but somewhat larger than the FITC dye. The lipid bilayers form giant unilamellar vesicles (GUVs), the behavior of which can be directly observed in the optical microscope. Several protocols for the preparation of GUVs have been developed. We apply and compare three well-established protocols based on polyvinyl alcohol (PVA) hydrogel swelling, electroformation on platinum wires, and electroformation on indium tin oxide (ITO) glass. For the same nanomolar concentration in the exterior solution, the coverage by His-tagged FITC is much lower than the one by His-tagged GFP. However, for both GFP and FITC, we find that the binding of the His-tagged molecules to the anchor lipids depends strongly on the preparation method. The highest binding affinitiy is obtained for electroformation on platinum wires. PVA gel swelling gives rise to a somewhat smaller binding affinity whereas electroformation on ITO glass leads to essentially no binding. Furthermore, the binding affinitiy is also observed to depend on the pH of the aqueous solution, with a relatively weak and strong pH-dependence for His-tagged GFP and His-tagged FITC, respectively.