Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Decision-Making with Naturalistic Options

MPG-Autoren
/persons/resource/persons268540

Demircan,  C
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons263619

Saanum,  T
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons256660

Binz,  M
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons139782

Schulz,  E
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Demircan, C., Pettini, L., Saanum, T., Binz, M., Baczkowski, B., Doeller, C., et al. (2022). Decision-Making with Naturalistic Options. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), 44th Annual Meeting of the Cognitive Science Society (CogSci 2022): Cognitive Diversity (pp. 976-982).


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-0829-0
Zusammenfassung
How do humans generalise to make better decisions? Previous work has investigated this question using reward-guided decision-making tasks with low-dimensional and artificial stimuli. In this paper, we extend this work by presenting participants with a naturalistic decision-making task, in which options were images of real-world objects and the underlying reward function was based on one of their latent dimensions. Even though participants received no explicit instruction about object features, they quickly learned to do the task and generalised to unseen objects. To understand how they accomplished this, we tested a range of computational models and found that human behaviour is overall best explained by a linear model but that participants’ strategies changed during the experiment. Lastly, we showed that combining pixel-based representations extracted from convolutional neural networks with the original latent dimensions further improved our models. Taken together, our study offers new insights into human decision making under naturalistic settings.