Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Tuneable electron-magnon coupling of ferromagnetic surface states in PdCoO2

MPG-Autoren
/persons/resource/persons186140

Sunko,  V.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons200145

Khim,  S.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons132116

Kushwaha,  P.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons215288

Marković,  I.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons260670

Chakraborti,  D.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126742

Mackenzie,  A. P.
Andrew Mackenzie, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mazzola, F., Yim, C.-M., Sunko, V., Khim, S., Kushwaha, P., Clark, O. J., et al. (2022). Tuneable electron-magnon coupling of ferromagnetic surface states in PdCoO2. npj Quantum Materials, 7(1): 20, pp. 1-6. doi:10.1038/s41535-022-00428-8.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-154C-A
Zusammenfassung
Controlling spin wave excitations in magnetic materials underpins the burgeoning field of magnonics. Yet, little is known about how magnons interact with the conduction electrons of itinerant magnets, or how this interplay can be controlled. Via a surface-sensitive spectroscopic approach, we demonstrate a strong electron-magnon coupling at the Pd-terminated surface of the delafossite oxide PdCoO2, where a polar surface charge mediates a Stoner transition to itinerant surface ferromagnetism. We show how the coupling is enhanced sevenfold with increasing surface disorder, and concomitant charge carrier doping, becoming sufficiently strong to drive the system into a polaronic regime, accompanied by a significant quasiparticle mass enhancement. Our study thus sheds light on electron-magnon interactions in solid-state materials, and the ways in which these can be controlled.