Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity

MPG-Autoren
/persons/resource/persons208363

Schönberger,  Katharina
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Obier,  Nadine
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Romero-Mulero,  Mari Carmen
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons204283

Cauchy,  Pierre
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Mess,  Julian
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Pavlovich,  Polina V.
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Zhang,  Yu Wei
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Mitterer,  Michael
Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Rettkowski,  Jasmin
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Lalioti,  Maria-Eleni
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Jäcklein,  Karin
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Curtis,  Jonathan D.
Department Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons241707

Trompouki,  Eirini
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons241896

Büscher,  Jörg Martin
Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons201431

Pearce,  Erika Laine
Department Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons204274

Cabezas-Wallscheid,  Nina
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schönberger, K., Obier, N., Romero-Mulero, M. C., Cauchy, P., Mess, J., Pavlovich, P. V., et al. (2022). Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity. Cell Stem Cell, 29, 131-148. doi:10.1016/j.stem.2021.10.002.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-1100-2
Zusammenfassung
Hematopoietic stem cells (HSCs) rely on complex regulatory networks to preserve stemness. Due to the scarcity
of HSCs, technical challenges have limited our insights into the interplay between metabolites, transcription,
and the epigenome. In this study, we generated low-input metabolomics, transcriptomics, chromatin accessibility, and chromatin immunoprecipitation data, revealing distinctmetabolic hubs that are enriched in HSCs and
their downstream multipotent progenitors. Mechanistically, we uncover a non-classical retinoic acid (RA)
signaling axis that regulates HSC function. We show that HSCs rely on Cyp26b1, an enzyme conventionally
considered to limit RA effects in the cell. In contrast to the traditional view, we demonstrate that Cyp26b1 is
indispensable for production of the active metabolite 4-oxo-RA. Further, RA receptor beta (Rarb) is required
for complete transmission of 4-oxo-RA-mediated signaling to maintain stem cells. Our findings emphasize
that a single metabolite controls stem cell fate by instructing epigenetic and transcriptional attributes.