Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Plasma-photon interaction in curved spacetime I: formalism and quasibound states around nonspinning black holes

MPG-Autoren

Cannizzaro,  Enrico
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Caputo,  Andrea
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Sberna,  Laura
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Pani,  Paolo
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cannizzaro, E., Caputo, A., Sberna, L., & Pani, P. (2021). Plasma-photon interaction in curved spacetime I: formalism and quasibound states around nonspinning black holes. Physical Review D, 103, 124018. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2020-221.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-1B54-A
Zusammenfassung
We investigate the linear dynamics of an electromagnetic field propagating in curved spacetime in the presence of plasma. The dynamical equations are generically more involved and richer than the effective Proca equation adopted as a model in previous work. We discuss the general equations and focus on the case of a cold plasma in the background of a spherically-symmetric black hole, showing that the system admits plasma-driven, quasibound electromagnetic states that are prone to become superradiantly unstable when the black hole rotates. The quasibound states are different from those of the Proca equation and have some similarities with the case of a massive scalar field, suggesting that the linear instability can be strongly suppressed compared to previous estimates. Our framework provides the first step towards a full understanding of the plasma-photon interactions around astrophysical black holes.