Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Primordial Black Holes from Confinement

MPG-Autoren

Dvali,  Gia
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Kuhnel,  Florian
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Zantedeschi,  Michael
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dvali, G., Kuhnel, F., & Zantedeschi, M. (2021). Primordial Black Holes from Confinement. Physical Review D, 104, 123507. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2021-287.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-1B16-0
Zusammenfassung
A mechanism for the formation of primordial black holes is proposed. Here, heavy quarks of a confining gauge theory produced by de Sitter fluctuations are pushed apart by inflation and get confined after horizon re-entry. The large amount of energy stored in the colour flux tubes connecting the quark pair leads to black-hole formation. These are much lighter and can be of higher spin than those produced by standard collapse of horizon-size inflationary overdensities. Other difficulties exhibited by such mechanisms are also avoided. Phenomenological features of the new mechanism are discussed as well as accounting for both the entirety of the dark matter and the supermassive black holes in the galactic centres. Under proper conditions, the mechanism can be realised in a generic confinement theory, including ordinary QCD. We discuss a possible string-theoretic realisation via $D$-branes. Interestingly, for conservative values of the string scale, the produced gravity waves are within the range of recent NANOGrav data. Simple generalisations of the mechanism allow for the existence of a significant scalar component of gravity waves with distinct observational signatures.