Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Global Structure of the Intrinsically Disordered Protein Tau Emerges from Its Local Structure

MPG-Autoren
/persons/resource/persons220228

Stelzl,  Lukas S.       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany;
KOMET 1, Institute of Physics, Johannes Gutenberg University Mainz, Mainz, Germany;
Institute of Molecular Biology (IMB), Mainz, Germany;

/persons/resource/persons243579

Pietrek,  Lisa M.
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons250144

Sikora,  Mateusz       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Faculty of Physics, University of Vienna, Vienna, Austria;

/persons/resource/persons194635

Köfinger,  Jürgen       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons15259

Hummer,  Gerhard       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Institute for Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Stelzl, L. S., Pietrek, L. M., Holla, A., Oroz, J., Sikora, M., Köfinger, J., et al. (2022). Global Structure of the Intrinsically Disordered Protein Tau Emerges from Its Local Structure. JACS Au, 2(3), 673-686. doi:10.1021/jacsau.1c00536.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-1C75-4
Zusammenfassung
The paradigmatic disordered protein tau plays an important role in neuronal function and neurodegenerative diseases. To disentangle the factors controlling the balance between functional and disease-associated conformational states, we build a structural ensemble of the tau K18 fragment containing the four pseudorepeat domains involved in both microtubule binding and amyloid fibril formation. We assemble 129-residue-long tau K18 chains with atomic detail from an extensive fragment library constructed with molecular dynamics simulations. We introduce a reweighted hierarchical chain growth (RHCG) algorithm that integrates experimental data reporting on the local structure into the assembly process in a systematic manner. By combining Bayesian ensemble refinement with importance sampling, we obtain well-defined ensembles and overcome the problem of exponentially varying weights in the integrative modeling of long-chain polymeric molecules. The resulting tau K18 ensembles capture nuclear magnetic resonance (NMR) chemical shift and J-coupling measurements. Without further fitting, we achieve very good agreement with measurements of NMR residual dipolar couplings. The good agreement with experimental measures of global structure such as single-molecule Förster resonance energy transfer (FRET) efficiencies is improved further by ensemble refinement. By comparing wild-type and mutant ensembles, we show that pathogenic single-point P301L, P301S, and P301T mutations shift the population from the turn-like conformations of the functional microtubule-bound state to the extended conformations of disease-associated tau fibrils. RHCG thus provides us with an atomically detailed view of the population equilibrium between functional and aggregation-prone states of tau K18, and demonstrates that global structural characteristics of this intrinsically disordered protein emerge from its local structure.