Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ionization Energies and Redox Potentials of Hydrated Transition Metal Ions: Evaluation of Domain-Based Local Pair Natural Orbital Coupled Cluster Approaches

MPG-Autoren
/persons/resource/persons270760

Bhattacharjee,  Sinjini
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons239899

Garcia-Ratés,  Miquel
Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216826

Pantazis,  Dimitrios A.
Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

ct1c01267_si_001.pdf
(Ergänzendes Material), 616KB

Zitation

Bhattacharjee, S., Isegawa, M., Garcia-Ratés, M., Neese, F., & Pantazis, D. A. (2022). Ionization Energies and Redox Potentials of Hydrated Transition Metal Ions: Evaluation of Domain-Based Local Pair Natural Orbital Coupled Cluster Approaches. Journal of Chemical Theory and Computation, 18(3), 1619-1632. doi:10.1021/acs.jctc.1c01267.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-27E0-D
Zusammenfassung
Hydrated transition metal ions are prototypical systems that can be used to model properties of transition metals in complex chemical environments. These seemingly simple systems present challenges for computational chemistry and are thus crucial in evaluations of quantum chemical methods for spin-state and redox energetics. In this work, we explore the applicability of the domain-based pair natural orbital implementation of coupled cluster (DLPNO-CC) theory to the calculation of ionization energies and redox potentials for hydrated ions of all first transition row (3d) metals in the 2+/3+ oxidation states, in connection with various solvation approaches. In terms of model definition, we investigate the construction of a minimally explicitly hydrated quantum cluster with a first and second hydration layer. We report on the convergence with respect to the coupled cluster expansion and the PNO space, as well as on the role of perturbative triple excitations. A recent implementation of the conductor-like polarizable continuum model (CPCM) for the DLPNO-CC approach is employed to determine self-consistent redox potentials at the coupled cluster level. Our results establish conditions for the convergence of DLPNO-CCSD(T) energetics and stress the absolute necessity to explicitly consider the second solvation sphere even when CPCM is used. The achievable accuracy for redox potentials of a practical DLPNO-based approach is, on average, 0.13 V. Furthermore, multilayer approaches that combine a higher-level DLPNO-CCSD(T) description of the first solvation sphere with a lower-level description of the second solvation layer are investigated. The present work establishes optimal and transferable methodological choices for employing DLPNO-based coupled cluster theory, the associated CPCM implementation, and cost-efficient multilayer derivatives of the approach for open-shell transition metal systems in complex environments.