English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

High-temperature superconductivity in hydrides: experimental evidence and details

MPS-Authors
/persons/resource/persons100925

Eremets,  M. I.
High Pressure Group, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203187

Minkov,  V. S.
High Pressure Group, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons208983

Drozdov,  A. P.
High Pressure Group, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons208985

Kong,  P. P.
High Pressure Group, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons270762

Ksenofontov,  V.
High Pressure Group, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Eremets, M. I., Minkov, V. S., Drozdov, A. P., Kong, P. P., Ksenofontov, V., Shylin, S. I., et al. (2022). High-temperature superconductivity in hydrides: experimental evidence and details.


Cite as: https://hdl.handle.net/21.11116/0000-000A-1E8C-8
Abstract
Since the discovery of superconductivity at 200 K in H3S [1] similar or higher transition temperatures, Tcs, have been reported for various hydrogen-rich compounds under ultra-high pressures [2]. Superconductivity was experimentally proved by different methods, including electrical resistance, magnetic susceptibility, optical infrared, and nuclear resonant scattering measurements. The crystal structures of superconducting phases were determined by X-ray diffraction. Numerous electrical transport measurements demonstrate the typical behaviour of a conventional phonon-mediated superconductor: zero resistance below Tc, the shift of Tc to lower temperatures under external magnetic fields, and pronounced isotope effect. Remarkably, the results are in good agreement with the theoretical predictions, which describe superconductivity in hydrides within the framework of the conventional BCS theory. However, despite this acknowledgment, experimental evidence for the superconducting state in these compounds has recently been treated with criticism [3, 4], which apparently stems from misunderstanding and misinterpretation of complicated experiments performed under very high pressures. Here, we describe in greater detail the experiments revealing high-temperature superconductivity in hydrides under high pressures. We show that the arguments against superconductivity [3, 4] can be either refuted or explained. The experiments on the high-temperature superconductivity in hydrides clearly contradict the theory of hole superconductivity [4] and eliminate it [3]