Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Relation between activity‐induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons


Hirrlinger,  J.
Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available

Gerkau, N. J., Lerchundi, R., Nelson, J. S. E., Lantermann, M., Meyer, J., Hirrlinger, J., et al. (2019). Relation between activity‐induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons. The Journal of Physiology, 597(23), 5687-5705. doi:10.1113/JP278658.

Cite as: https://hdl.handle.net/21.11116/0000-000A-D165-8
Excitatory neuronal activity results in the influx of Na+ through voltage- and ligand-gated channels. Recovery from accompanying increases in intracellular Na+ concentrations ([Na+]i) is mainly mediated by the Na+/K+-ATPase (NKA) and is one of the major energy-consuming processes in the brain. Here, we analysed the relation between different patterns of activity-induced [Na+]i signalling and ATP in mouse hippocampal CA1 pyramidal neurons by Na+ imaging with sodium-binding benzofurane isophthalate (SBFI) and employing the genetically encoded nanosensor ATeam1.03YEMK (ATeam). In situ calibrations demonstrated a sigmoidal dependence of the ATeam Förster resonance energy transfer ratio on the intracellular ATP concentration ([ATP]i) with an apparent KD of 2.6 mm, indicating its suitability for [ATP]i measurement. Induction of recurrent network activity resulted in global [Na+]i oscillations with amplitudes of ∼10 mm, encompassing somata and dendrites. These were accompanied by a steady decline in [ATP]i by 0.3–0.4 mm in both compartments. Global [Na+]i transients, induced by afferent fibre stimulation or bath application of glutamate, caused delayed, transient decreases in [ATP]i as well. Brief focal glutamate application that evoked transient local Na+ influx into a dendrite, however, did not result in a measurable reduction in [ATP]i. Our results suggest that ATP consumption by the NKA following global [Na+]i transients temporarily overrides its availability, causing a decrease in [ATP]i. Locally restricted Na+ transients, however, do not result in detectable changes in local [ATP]i, suggesting that ATP production, together with rapid intracellular diffusion of both ATP and Na+ from and to unstimulated neighbouring regions, counteracts a local energy shortage under these conditions.