English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mistletoe viscin : a hygro- and mechano-responsive cellulose-based adhesive for diverse materials applications

MPS-Authors
/persons/resource/persons211345

Horbelt,  Nils
Matthew Harrington, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121298

Fratzl,  Peter
Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121387

Harrington,  Matthew J.
Matthew Harrington, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 7MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Horbelt, N., Fratzl, P., & Harrington, M. J. (2022). Mistletoe viscin: a hygro- and mechano-responsive cellulose-based adhesive for diverse materials applications. PNAS Nexus, 1(1): pgac026. doi:10.1093/pnasnexus/pgac026.


Cite as: https://hdl.handle.net/21.11116/0000-000A-2BD6-5
Abstract
Mistletoe viscin is a natural cellulosic adhesive consisting of hierarchically organized cellulose microfibrils (CMFs) surrounded by a humidity-responsive matrix that enables mechanical drawing into stiff and sticky fibers. Here, we explored the processability and adhesive capacity of viscin and demonstrated its potential as a source material for various materials applications, as well as a source for bio-inspired design. Specifically, we revealed that viscin fibers exhibit humidity-activated self-adhesive properties that enable “contact welding” into complex 2D and 3D architectures under ambient conditions. We additionally discovered that viscin can be processed into stiff and transparent free-standing films via biaxial stretching in the hydrated state, followed by drying, whereby CMFs align along local stress fields. Furthermore, we determined that viscin adheres strongly to both synthetic materials (metals, plastics, glass) and biological tissues, such as skin and cartilage. In particular, skin adhesion makes viscin a compelling candidate as a wound sealant, as we further demonstrate. These findings highlight the enormous potential of this hygro- and mechanoresponsive fiber-reinforced adhesive for bio-inspired and biomedical applications.